Big Data Management and Security
Audit Concerns and Business Risks

Tami Frankenfield
Sr. Director, Analytics and Enterprise Data
Mercury Insurance
What is Big Data?

Velocity Frequency of data generation
- 48 hours of video uploaded to YouTube every minute
- 2,000,000 queries on Google every minute
- 47,000 App downloads per minute at the Apple Store

Volume The growth of world data
- 1 terabyte holds the equivalent of roughly 210 single-sided DVDs.

Variety Structured and unstructured data – types of Big Data
- **Web and social media**
 - Data includes clickstream and interaction data from social media such as Facebook, Twitter, LinkedIn, and blogs.
- **Machine to machine**
 - Data includes readings from sensors, meters, and other devices as part of the so-called “internet of things.”
- **Big transaction data**
 - Includes healthcare claims, telecommunications call detail records (CDRs), and utility billing records that are increasingly available in semi-structured and unstructured formats.
- **Biometric**
 - Data includes fingerprints, genetics, handwriting, retinal scans, and similar types of data.
- **Human-generated**
 - Data includes vast quantities of unstructured and semi-structured data such as call centre agents’ notes, voice recordings, email, paper documents, surveys, and electronic medical records.
The Big Data Journey

Big Data is the next step in the evolution of analytics to answer critical and often highly complex business questions. However, that journey seldom starts with technology and requires a broad approach to realize the desired value.
Implications of Big Data?

Enterprises face the challenge and opportunity of storing and analyzing Big Data.

• Handling more than 10 TB of data

• Data with a changing structure or no structure at all

• Very high throughput systems: for example, in globally popular websites with millions of concurrent users and thousands of queries per second

• Business requirements that differ from the relational database model: for example, swapping ACID (Atomicity, Consistency, Isolation, Durability) for BASE (Basically Available, Soft State, Eventually Consistent)

• Processing of machine learning queries that are inefficient or impossible to express using SQL

“Shift thinking from the old world where data was scarce, to a world where business leaders demonstrate data fluency” – Forrester

“Information governance focus needs to shift away from more concrete, black and white issues centered on ‘truth’, toward more fluid shades of gray centered on ‘trust.’” – Gartner

“Enterprises can leverage the data influx to glean new insights – Big Data represents a largely untapped source of customer, product, and market intelligence” – IBM CIO Study
Taking a Look at the Big Data Ecosystem

Big Data is supported and moved forward by a number of capabilities throughout the ecosystem. In many cases, vendors and resources play multiple roles and are continuing to evolve their technologies and talent to meet the changing market demands.
Big Data Storage and Management

An Hadoop based solution is designed to leverage distributed storage and a parallel processing framework (MapReduce) for addressing the big data problem. Hadoop is an Apache foundation open source project.

Apache Hadoop Ecosystem

- UI Framework
- SDK
- PIG (Data Flow)
- HIVE (SQL)
- OOZIE (Workflow & Scheduling)
- MapReduce (Job Scheduling and Processing Engine)
- Hadoop
- HBase (Distributed DB)
- HDFS (Storage Layer)

Connectors

- Traditional Data Warehouse (DW)
- Traditional Databases
- Advanced Analytics Tools
- MPP or In-memory solutions
Big Data Storage and Management

The need for Big Data storage and management has resulted in a wide array of solutions spanning from advanced relational databases to non-relational databases and file systems. The choice of the solution is primarily dictated by the use case and the underlying data type.

Non-Relational Databases have been developed to address the need for semi-structured and unstructured data storage and management.

Relational Databases are evolving to address the need for structured Big Data storage and management.

Hadoop HDFS is a widely used key-value store designed for Big Data processing.
Big Data Security

Big Data security should address four main requirements – perimeter security and authentication, authorization and access, data protection, and audit and reporting. Centralized administration and coordinated enforcement of security policies should be considered.

- **Perimeter Security & Authentication**: Required for guarding access to the system, its data and services. Authentication makes sure the user is who he claims to be. Two levels of Authentication need to be in place – perimeter and intra-cluster.
 - Kerberos
 - LDAP/ Active Directory and BU Security Tool Integration**

- **Authorization & Access**: Required to manage access and control over data, resources and services. Authorization can be enforced at varying levels of granularity and in compliance with existing enterprise security standards.
 - File & Directory Permissions, ACL
 - Role Based Access Controls

- **Data Protection**: Required to control unauthorized access to sensitive data either while at rest or in motion. Data protection should be considered at field, file and network level and appropriate methods should be adopted.
 - Encryption at Rest and in Motion
 - Data Masking & Tokenization

- **Audit & Reporting**: Required to maintain and report activity on the system. Auditing is necessary for managing security compliance and other requirements like security forensics.
 - Audit Data
 - Audit Reporting

<table>
<thead>
<tr>
<th>Applicability Across Environments</th>
<th>Production</th>
<th>Research</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Integration of Security, Access, Control and Encryption across major components of the Big Data landscape.

Security/Access Control UI
- Ability to define roles
- Ability to add/remove users
- Ability to assign roles to users
- Ability to scale across platforms

LDAP/ACTIVE Directory
Security, Access, Control and Encryption Details

Guidelines & Considerations

Encryption / Anonymization
- Data should be natively encrypted during ingestion of data into Hadoop (regardless of the data getting loaded into HDFS/Hive/HBase)
- Encryption Key management should be maintained at a Hadoop Admin level, thereby the sanctity of the Encryption is maintained properly

Levels of granularity in relation to data access and security
- **HDFS**: Folder and File level access control
- **Hive**: Table and Column level access control
- **HBase**: Table and Column Family level access control

Security implementation protocol
- Security/Data Access controls should be maintained at the lowest level of details within a Hadoop cluster
- Overhead of having Security/Data Access should be minimum on any CRUD operation

Manageability / scalability
- GUI to Create/Maintain Roles/Users etc. to enable security or data access for all areas of Hadoop
- Ability to export/share the information held in the GUI across other applications/platforms
- Same GUI interface or application should be able to scale across multiple platforms (Hadoop and Non-Hadoop)

Key Terms Defined

In Hadoop, Kerberos currently provides two aspects of security:
- **Authentication** – This feature can be enabled by mapping the UNIX level Kerberos IDs to that of Hadoop. In a mature environment, Kerberos is linked/mapped to Active Directory or LDAP system of an organization. Maintenance of mapping is typically complicated
- **Authorization** – Mapping done in the Authentication level is leveraged by the Authorization and the users can be authorized to access data at the HDFS folder level

Point of View

Large organizations should adopt a more scalable solution with finer grains of access control and encryption/anonymization of data
Select a tool which is architecturally highly scalable and consists of the following features:
- Levels of granularity in relation to data access and security
- Security implementation protocol
- Manageability/scalability
- Encryption/Anonymization
Multi-Tenancy Details

Guidelines & Considerations

Multi-tenancy in Hadoop primarily need to address two key things:

1. Resource sharing between multiple applications and making sure none of the application impacts the cluster because of heavy usage
2. Data security/Auditing - users and applications of one application should not be able to access HDFS data of other apps

- Vendors vary according to their support for a POSIX file system: MapR provides it by default, IBM BigInsights and Pivotal provide POSIX compliant add on packages (General Parallel File System and Isilon, respectively)
- POSIX compliant file systems simplify initial migration into the Hadoop distribution. The relative advantage over other Hadoop distribution decreases as the load approaches steady state
- Access Control Lists (ACLs) facilitate multi-tenancy by ensuring only certain groups and users can run jobs
- With the evolution of YARN, the capacity scheduler can be used to set a minimum guaranteed resource per application as a % of RAM available (% of CPU will be possible in future)
 - This is a more efficient way of sharing resources between different groups within an organization. Before YARN, resources in Hadoop are available only as a number of map reduce slots available. So although multi-tenancy was possible, it was not very efficient

Key Terms Defined

- **A POSIX compliant filesystem** - provides high availability of Hadoop by having name node data totally distributed removing the single point of failure efficiently. Enables HDFS federation
- **MapR volume** – a collection of directories that contains data for a single business unit, application or user group. Policies may be applied to a volume to enforce security or ensure availability
- **YARN** decouples workload management from resource management, enabling multi tenancy

Point of View

- Multi-tenancy begins with a multi-user-capable platform. Further, in a clustered computing environment, it involves multi-tenancy at a data (file system) level, a workload (jobs and tasks) level, and a systems (node and host) level
- The recent advancements of YARN and Hadoop 2.0 are quickly closing the feature gap between proprietary file systems and HDFS
Big Data Security Options and Recommendations

<table>
<thead>
<tr>
<th>Perimeter Security & Authentication</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop supports Kerberos as a third party Authentication mechanism</td>
<td>Kerberos is highly recommended as it supports authentication mechanisms throughout the cluster</td>
</tr>
<tr>
<td>Used for Intra Services authentication (Name Node-Data Node, Task Tracker, Oozie etc), End User-Services (Hue, File browser, cli etc)</td>
<td>Use Apache Knox for perimeter authentication to Hive, HDFS, HBase etc</td>
</tr>
<tr>
<td>Ticket based authentication and Operates within a realm (hadoop cluster) and inter-realms as well</td>
<td>Manage user groups in POSIX layer (initially atleast). Resolving user groups from LDAP involves corporate IT dependency</td>
</tr>
<tr>
<td>Users and services rely on a third party Kerberos server - to authenticate each other</td>
<td>Hadoop security implementation is not easy. Take a phased approach.</td>
</tr>
<tr>
<td>Offers one way, two way Trust options</td>
<td>✓ Configure Kerberos for Hadoop</td>
</tr>
<tr>
<td>Offers LDAP integration options</td>
<td>✓ Provision initial set of users/user groups in POSIX layer</td>
</tr>
<tr>
<td>Authorization & Access</td>
<td>Integrate LDAP/Single-Sign On (Kerberos, Hue, Ambari)</td>
</tr>
<tr>
<td>Data Protection</td>
<td>Prepare final list of users/user groups and provision the users on POSIX layer matching ldap principals</td>
</tr>
<tr>
<td>Audit & Reporting</td>
<td>Optionally Configure Knox gateway for perimeter authentication for external systems (with LDAP or SSO)</td>
</tr>
</tbody>
</table>

Background

- HDFS Permission bits
- HDFS ACLs
- YARN ACLs
- Access control for Hive/HBase with Apache Knox

Recommendations

- Authorization control with Apache Knox for column/row access restrictions for users
- Optionally configure Accumulo if cell level restrictions are required for HBase/Hive

- Hadoop supports Data Encryption in Motion – HTTPS (web clients, REST), RPC Encryption (API, Java Frameworks), Data Transfer protocol (Name Node-Data Node)
- No Options available for Data Encryption at Rest at the moment

- HDFS Auditing – Centrally available via Ranger(XA secure)
- Perimeter Access – Available at Knox
- Job Auditing – Admin console, Job Tracker Logs

- Monitor your YARN capacity – Key to enhance multi-tenancy
- Set-up Security compliance process
- Set-up user administrative process/auditing